Fuel from water a reality soon

Fuel from water a reality soon
x
Highlights

Fuel From Water a Reality Soon. Researchers, including one of Indian-origin, have moved one step closer to turning water and sunlight into sustainable fuel by successfully replicating a crucial step in photosynthesis.

Researchers, including one of Indian-origin, have moved one step closer to turning water and sunlight into sustainable fuel by successfully replicating a crucial step in photosynthesis.

"Water is abundant and so is sunlight. It is an exciting prospect to use them to create hydrogen, and do it cheaply and safely," said Dr Kastoori Hingorani, from the ARC Centre of Excellence for Translational Photosynthesis in the Australian National University Research School of Biology.

Hydrogen offers potential as a zero-carbon replacement for petroleum products, and is already used for launching space craft.

However, until this work, the way that plants produce hydrogen by splitting water has been poorly understood. The team created a protein which, when exposed to light, displays the electrical heartbeat that is the key to photosynthesis.

The system uses a naturally-occurring protein and does not need batteries or expensive metals, meaning it could be affordable in developing countries, Hingorani said.

Co-researcher Professor Ron Pace said the research opened up new possibilities for manufacturing hydrogen as a cheap and clean source of fuel.

"This is the first time we have replicated the primary capture of energy from sunlight," Pace said.

"It's the beginning of a whole suite of possibilities, such as creating a highly efficient fuel, or to trapping atmospheric carbon," said Pace. Pace said large amounts of hydrogen fuel produced by artificial photosynthesis could transform the economy.

"That carbon-free cycle is essentially indefinitely sustainable. Sunlight is extraordinarily abundant, water is everywhere - the raw materials we need to make the fuel. And at the end of the usage cycle it goes back to water," he said.

The team modified a much-researched and ubiquitous protein, Ferritin, which is present in almost all living organisms.

Ferritin's usual role is to store iron, but the team removed the iron and replaced it with the abundant metal, manganese, to closely resemble the water splitting site in photosynthesis.

The protein also binds a haem group, which the researchers replaced with a light-sensitive pigment, Zinc Chlorin.

When they shone light onto the modified ferritin, there was a clear indication of charge transfer just like in natural photosynthesis. The research was published in the journal BBA Bioenergetics.

Show Full Article
Print Article
Next Story
More Stories
ADVERTISEMENT
ADVERTISEMENTS